
Intel® VTune Profiler and Intel® Advisor
Hands on in Intel® DevCloud

ATPESC 21

Kevin O’Leary

2

Agenda

1 Information on starting a GPU node
in DevCloud.

Intel® DevCloud Setup

2 Overview of MandelbrotOMP sample
and changes.

Workload Description

3 Brief explanation on setting up Intel
VTune Profiler Server in the
DevCloud node.

Intel VTune Profiler Server Setup

4 Running the sample in the DevCloud
with Intel Advisor and Intel VTune
Profiler.

Demo

3

Workflow

Log into an Intel®
DevCloud GPU
node and
configure the
MandelbrotOMP
sample

Run Intel Advisor:
Offload Advisor
to estimate
performance on
Gen9 GT2 GPU

Run Intel Advisor:
GPU Roofline on
offloaded
implementation
to visualize GPU
performance

Run Intel VTune
Profiler: GPU
Hotspots for
deeper insights
into GPU kernels
and device
metrics

4

Log into DevCloudvia ssh

Start interactive gpunode:

$ qsub -I -l

nodes=1:gpu:ppn=2

Create MandelbrotOMPsample:

https://github.com/oneapi-
src/oneAPI-samples

Intel DevCloud provides a free environment for testing the
latest Intel CPUs and GPUs. Intel oneAPI toolkits are
already installed and set up for use.

To create a DevCloud account, follow these steps:

https://www.intel.com/content/www/us
/en/forms/idz/devcloud-
enrollment/oneapi-request.html

Start Intel VTuneProfiler Server in
second sshterminal

https://www.intel.com/content/www/us/en/forms/idz/devcloud-enrollment/oneapi-request.html

5

▪ This sample runs one or all of four algorithms for generating a
Mandelbrot image. Each algorithm has an increasing level of
optimization, from a serial implementation to using OpenMP for
parallelization and simd vectorization.

▪ Github link: https://github.com/oneapi-src/oneAPI-
samples/tree/master/DirectProgramming/C%2B%2B/Combinationa
lLogic/MandelbrotOMP

6

▪ To help demonstrate the capabilities of Intel Offload Advisor, we
added a fifth function to use OpenMP offload to a GPU target:

• src/mandelbrot.cpp

• Copy the omp_mandelbrot (..) function and rename to
offload_mandelbrot (..)

• Change #pragma omp parallel for schedule to:

• #pragma omp target teams distribute \

parallel for simd collapse(2) \
map(from:output[0:width*height])
map(to:height,width,xstep,ystep,max_depth)

• src/mandelbrot.hpp

• Copy the omp_mandelbrot (..) function and rename to
offload_Mandelbrot (..)

7

▪ Add a fifth option to enable the new offload_mandelbrot function

• src/main.cpp

• Change the max_depth from 100 to 5000

• Add variable offload_time to

• double serial_time,
omp_simd_time,
omp_parallel_time,
omp_both_time;

• Add section for offload_mandelbrot under
printf(“\nRunning all tests\n”)

• Add case 5 with offload_Mandelbrot to switch
(option)

• Not using PERF_NUM

8

▪ Change options to use OpenMP offload capability

• Change compiler from icpc to icpx

• Remove qopenmp from CFLAGS and
LIBFLAGS and add: -fiopenmp -

fopenmp-targets=spir64

• Add –g -D__INTEL_COMPILER to
CFLAGS

9

▪ Follow the instructions in the online Intel VTune Profiler Performance
Analysis Cookbook:
https://software.intel.com/content/www/us/en/develop/documentation/v
tune-cookbook/top/configuration-recipes/using-vtune-server-with-vs-
code-intel-devcloud.html

• After setting up the ssh terminal for the DevCloud GPU node, open a
new terminal and run:
• $ ssh -L 127.0.0.1:55001:127.0.0.1:55001 devcloud

• $ ssh -L 127.0.0.1:55001:127.0.0.1:55001 <node>

• $ vtune-backend --web-port=55001 --enable-server-profiling

• Copy the URL provided into the browser to start the Intel VTune Profiler
GUI

https://software.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/configuration-recipes/using-vtune-server-with-vs-code-intel-devcloud.html

10

Demo

▪Running the sample in the DevCloud with Intel Advisor and
Intel VTune Profiler.

11

Demo Steps

▪ Example screenshots and commands from the demo follow

12

▪ Follow the instructions on slide 4 to open a ssh terminal for an
interactive GPU node on DevCloud. This node uses Intel processor
codenamed Coffee Lake and has an integrated Gen9 GT2 GPU.

• qsub -I -l nodes=1:gpu:ppn=2

13

▪ Run the following Intel Advisor CLI commands on the parallel
OpenMP implementation of MandelbrotOMP (option 3) to estimate
the performance benefits of offloading to a Gen9 GT2 GPU:

• advisor --collect=survey --project-dir=./parallel_mandel --stackwalk-

mode=online --static-instruction-mix --

/home/uxxxxx/MandelbrotOMP/release/Mandelbrot 3

• advisor --collect=tripcounts --project-dir=./parallel_mandel --flop -

-target-device=gen9_gt2 --

/home/uxxxxx/MandelbrotOMP/release/Mandelbrot 3

• advisor --collect=projection --project-dir=./ parallel_mandel --

config=gen9_gt2 --no-assume-dependencies

14

▪ Package the Intel Advisor project on the DevCloud node and copy to
your local system with Advisor 2021.3 installed:

• advisor --snapshot --project-dir=./parallel_mandel --pack --cache-

sources --cache-binaries -- ./parallel_mandel_snapshot

15

This report shows that a
speed up of 1.9x can be
gained by offloading the
loops.

The loop is expected to
run for 538.2ms on the
GPU.

16

Reconfigure GPU settings to a hypothetical new

GPU

Then save custom config to scalers.toml

advisor --collect=projection --project-dir=./parallel_mandel --custom-config=scalers.toml --no-assume-

dependencies

Rerun projection

17

▪ Use Intel® Advisor CLI to generate a GPU Roofline report on the
offload implementation (option 5):

• advisor --collect=survey --project-dir=./offload_mandel --profile-gpu

-- /home/uxxxxx/MandelbrotOMP/release/Mandelbrot 5

• advisor --collect=tripcounts --project-dir=./offload_mandel --flop --

profile-gpu -- /home/uxxxxx/MandelbrotOMP/release/Mandelbrot 5

• advisor -report=roofline -gpu -project-dir=./offload_mandel --report-

output=./gpu_roofline.html

▪ Create a snapshot for download to the local GUI:

• advisor --snapshot --project-dir=./offload_mandel --pack --cache-

sources --cache-binaries -- ./offload_mandel_snapshot

18

▪ The overall elapsed time of 4.67s is much
higher in the offloaded version than the
parallel CPU implementation (1.49s). But
the compute task has a speed-up:

• From 1.03s in parallel_mandelbrot to
0.72s in offload_Mandelbrot. Not quite
hitting the estimate of 538.2ms.

• Nearly 4s is spent on the CPU

19

▪ The offload task appears to be
bounded by the DP Vector Add
Peak. Otherwise, it appears to
make good use of the GPU.

• EU Array is 99.2% active, and the threading
occupancy is almost 100%

• There is an unknown task consuming 3.951s of
CPU time with 100% idle GPU time.

20

▪ Running gpu-hotspots on the command-line

▪ vtune –collect gpu-hotspots ./Mandelbrot 5

▪ Generating a report Elapsed Time: 4.386s

▪ GPU Time: 0.682s

▪ EU Array Stalled/Idle: 0.8%

▪ GPU L3 Bandwidth Bound: 0.3%

▪ Hottest GPU Computing Tasks Bound by GPU L3 Bandwidth

▪ Computing Task Total Time

▪ -------------- ----------

▪ Sampler Busy: 0.0%

▪ Hottest GPU Computing Tasks with High Sampler Usage

▪ Computing Task Total Time

▪ -------------- ----------

▪ FPU Utilization: 96.3%

▪ Hottest GPU Computing Tasks with High FPU Utilization

Copy result directory to

local system

21

▪ Once the Intel VTune Profiler is running with the vtune-backend
command, open the URL in the browser for the GUI.
• Set the application to

/home/uxxxxx/MandelbrotOMP/release/
Mandelbrot and set the application
parameter to 5.

• Run the GPU Compute/Media Hotspots
analysis type

22

▪ The Summary tab shows that although
only a small percentage of the overall
elapsed time is spent on the GPU, the
offload task performs well on the GPU.

▪ The Graphics tab doesn’t indicate any
major problems. Under the Platform sub-
tab, there is an OpenMP task called
zeModuleCreate that runs for about 3.5s.
That explains the high CPU utilization
time.

23

Summary

▪ You can use Advisor and VTune GUI & CLI to run the collection and
to generate the reports.

▪ Advisor and VTune provides several analysis types to profile GPU
workload.

▪ Each analysis type provides specific insights

24

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice.

Notice revision #20110804

24

▪ Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

▪ INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR
A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

▪ Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of
Intel Corporation in the U.S. and other countries.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

25

Backup

26

Set up system for GPU analysis

▪ To collect GPU hardware metrics on Linux, you need

• run the collection as root

or

• set /proc/sys/dev/i915/perf_stream_paranoid to 0

• have read/write access to /dev/dri/card* and /dev/dri/renderD* files

▪ Optional: To collect information about DMA packets on Linux, you need

• enable CONFIG_DRM_I915_LOW_LEVEL_TRACEPOINTS option for i915 kernel
module

• have read/write access to debugFS

VTune Profiler documentation: Set Up Sytem for GPU Analysis

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/installation/set-up-system-for-gpu-analysis.html

27

Compiler Switches for Performance Analysis

VTune Profiler documentation:

• Compiler Switches for Performance Analysis on Linux* Targets

• Debug Information for Linux* Application Binaries

-gline-tables-only
-fdebug-info-for-profiling

Enable generating debug information for GPU analysis of a DPC++ or
OpenMP applications. This information is necessary for source-
assembly mapping for GPU kernels.
Intel oneAPI DPC++ Compiler and Intel C++ Compiler

-debug offload Enable generating debug information for GPU analysis of OpenMP
application. This information is necessary for source-assembly mapping
offload regions.
Intel Fortran Compiler

-parallel-source-info=2 Enable source location emission when OpenMP or auto-parallelism
code is generated. `2` is the level of source location emission that tells
the compiler to emit path, file, routine name, and line information.
Intel C++ Compiler and Intel Fortran Compiler

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/set-up-analysis-target/linux-targets/compiler-switches-for-performance-analysis-on-linux-targets.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/set-up-analysis-target/linux-targets/debug-info-for-linux-binaries.html

28

